Assessment of the Sustainability Performance of a Typical Residential Apartment in Kolkata

Rohan Singh Wilkho¹, Syed Shamim Ashraf², Mriganka Shekhar Das³, Biswajit Thakur⁴ and Adrija Roy⁵

^{1,2,3,5}Jadavpur University

⁴Meghnad Saha Institute of Technology E-mail: ¹rohanwilkho@gmail.com, ²syedshameemashraf.ju@gmail.com, ³mridas1994@gmail.com, ⁴biswajit.thkr@gmail.com and ⁵adrijaroy1994@gmail.com

Abstract—The environmental impacts of the ever-growing building and real estate sector, particularly from the viewpoint of sustainability and climate change, have always been a major cause of concern worldwide. Construction sector in India is in a stage of 9-10% annual growth, resulting in consecutive ascent of demand in land, electricity, potable water, energy intensive construction materials and many other resources. The concept of 'Green Building' design, construction and certification is gradually gaining popularity in this country as an effective means of increasing sustainability of the building construction projects, particularly the commercial buildings, and reducing their negative impacts on environment. The extension of the concept to residential buildings is a recent phenomenon; and to popularize it among the developers and potential buyers a clear picture about the extra cost involved, if any is necessary. In the present paper the sustainability performance of a typical stand-alone residential apartment building in Kolkata, built conventionally, is assessed following the criteria specified in 'IGBC Green Homes' guidelines. The material quantity and construction cost of the building is also estimated following standard procedures. The results are compared with the probable cost of a hypothetical building, structurally and functionally similar to the actual conventional one, but implementing various sustainability features to make it a certified green building following the mentioned code. The tangible and intangible benefits of the hypothetical green building over the conventional actual one are also discussed.

1. INTRODUCTION

Energy consumption and demand in prevailing mechanized life is increasing rapidly and building sector (residential or commercial) is identified as one of the major consumer. The worldwide average of energy consumption in building sector, for the year 2004 amounts to be about 24% and is predicted to grow by 34% in the next 20 years, at an yearly average rate of 1.5%. In India, residential sector consumes about 10%, and 23.4% of primary energy, and electricity respectively. Apart from energy, building sector consumes other resources like water and different construction materials to a huge extent. The concerns behind sustainable 'Green Building' development are two-fold viz. exhaustion of non-renewably energy and other natural resources and hazardous impacts on environment such as global warming, ozone layer depletion, climate change, etc. which are being addressed with due importance and seriousness presently. [1-3]

Green buildings are designed to reduce the overall impact of the built environment on human health and the natural environment by efficiently using energy, water, and other resources, protecting occupant health and improving employee productivity, and reducing waste, pollution and environmental degradation. The goals are achieved through better sitting, design, construction, operation, maintenance, and removal. [4-5]

The concept of 'Green Building' design, construction and certification is gradually gaining popularity in India particularly for the commercial buildings. The extension of the concept to residential buildings is a recent phenomenon; and to popularize it among the developers and potential buyers a clear picture about the extra cost involved, if any is necessary. Properly designed Green building can actually be proven as economically beneficial if analyzed considering all the available direct and indirect savings in fiscal resource, apart from its positive impacts on the environment. The present study actually aims to prove that green construction can also contribute to direct financial benefits for the developers as well as users.

2. STUDY OBJECTIVES

The primary objective of this study is to methodically calculate and compare the involved cost and acquired financial benefits; by implementing green building requirements on a typical, stand-alone, residential apartment building in Kolkata following the rules of 'IGBC Green Homes'. There are a number of codes present in India to manifest the techniques to construction of sustainable buildings. Among these, 'IGBC Green Homes' is the first rating program developed in India, exclusively for the residential sector. It is based on accepted energy and environmental principles and strikes a balance between known established practices and emerging concepts. [6]

3. DESCRIPTION OF THE BUILDING

To fulfill the study objectives the material quantity and cost of a typical stand-alone residential apartment building in Kolkata, built conventionally, is estimated following standard procedures. The sustainability performance of the same is assessed following the criteria specified in 'IGBC Green Homes' guidelines. The results are compared with the probable cost of a hypothetical building, structurally and functionally similar to the actual conventional one, but implementing various sustainability features to make it a certified green building following the mentioned code. Both of these are described in the subsequent sections.

3.1 The Conventional Building

The building considered, is located at Picnic Garden in Kolkata (22°34' N, 88°22' E), the capital of the state of West Bengal, India. It is a five (G+4) storied building with three identical apartments at each floor levels. The total site area is about 602 sq m (6480 sq ft) of the aforementioned flat. Again, from the survey, the total exposed site area is about 295 sq m (3176 sq ft). The super built up area of the project is 1834 sq m (19740 sq ft). The total number of dwellers in the twelve apartments of the building is 48. The building is a typical R.C.C. framed structure where ordinary burnt clay bricks were used. It was constructed following the local building rules; however, green building norms were not taken into account.

3.2 The Sustainable Alternative

To conceptualize the hypothetical green building, it was targeted to achieve the criteria for a gold rated green building, and depending upon the ease and feasibility of incorporating the changes, the 'IGBC Green Homes' guided methodologies are adopted and manifested. The six different subsections mentioned thereafter, namely Site Selection and Planning, Water Efficiency, Energy Efficiency, Materials and Resources, Indoor Environmental Quality, Innovation and Design, are taken for individual credit points as per the code.

The site selection criteria as laid in IGBC green home is considered. The current site area which is covered with concrete is replaced with grass pavers thus reducing the surface run off of rain water. The roof and non-roof heat island effect is minimized. The landscape design is simulated to include 15% vegetated site area. Moreover, high reflectance tiles are used in the 50% area of roof in order to decrease roof heat island effect.

Water fixtures present in the existing building are conceptually replaced by more efficient counter parts in the hypothetical green building and then a study is made in the net water savings possible by such installation. Rainwater harvesting methods are also designed and a separate tank for collection of the same is also designed. Segregated turf area is designed and moisture sensor controlled drip irrigation is provided to the landscape vegetation. Drip irrigation is decided to provide by continuous supply of water through water pipes running uniformly although, and by making holes in uniform distribution in the pipes. Central shut off valve provided for irrigation. Moreover water meter is incorporated in the new conceptual design.

The current electrical appliances as observed by the survey were found to be unrated. Current MOP (market operating price) of all such equipments is also listed. In the hypothetical building they are conceptually replaced by more energy efficient fixtures. In order to achieve energy efficiency, 20% reduction in LPD (Light Power Density) is considered.

The location, area and openings of the windows are considered. The glass material initially present were found to be sufficient to satisfy the criteria as per IGBC Green Homes Guidelines, so no change was made in that regard. No smoking signs in public and common zone and exit signs for lift and staircases etc. are also provided.

Vermi-composter is decided to provide to achieve solid waste management. The building already has septic tank in operation. Fly ash blocks and composite and certified woods are used for construction. Most of the materials used for construction are local materials. The proposed green building is also provided with separate bins for organic and dry and wet inorganic waste.

4. QUANTITY AND COST ESTIMATION

The material quantity of the conventional building is estimated following standard procedures of centre-line method. The total cost of construction and the valuation of the existing building along with all its appliances and

Seri al	Descript ion of	Total Cost (`)	Recycl ed	Total Recycl	Loc al	Distance Manufac	Local Cost
No.	Material	COSE()	Value	ed	Val	turing	Value
			(%)	Cost		(km)	()
1	Steel	293947 8	60	() 176368 7	(%) 100	< 400 km	293947 8
2	Cement	295054	25	73763	100	< 400 km	295054
3	Tiles	297002 7	24	712807	0	>400 km	0
4	Glass	31837	18	5731	100	< 400 km	31837
5	Sand	590107	0	0	100	< 400 km	206537 5
6	Brick	191650 8	0	0	100	< 400 km	191650 8
7	Wood	171093 3	0	0	0	> 400 km	0
,	Total	104539	24.45	255598	70.3		724825
		44		8	4		2

 Table 1: Estimated Material Cost for the Conventional Building.

fixtures are calculated using the rate chart available in the market. For the other appliances, which are not included in standard rate chart, a thorough market survey was conducted to obtain the price of those items. The estimated value of the material cost for the conventional building is provided in Table-1. From detailed calculations, the total cost of construction of the conventional building came out to be around ` 23206625.00 (about ` 1176.00 per square feet).

For the hypothetical green building, all the changes are enlisted and analyzed thoroughly for calculating the extra cost incurred on that of the existing building. The proposed Green Building is designed in such a manner to acquire at-least 70 points in order to be eligible as Gold rated one. In this state, the overall estimation of this Green Construction helps determining the added cost for embracing the decided sustainable techniques, over that of the normal construction already existing in operational stage. The comparison of the sustainability performance along with the cost involvement on account of various sustainability parameters for the conventional building and its green counterpart are detailed in Table-2. On evaluating the additional costs (`1833085.00 in total) incurred on account of building a gold certified green building, the total cost of construction came out to be around ` 25039710.00 (about ` 1268.00 per square feet).

5. BENEFIT ESTIMATION

There are several tangible and intangible benefits of the hypothetical green building over the conventional actual one. Apart from contributing to the environment by sustainability, optimization and resource-efficient criteria, there can be substantial amount of tangible monetary benefits for the developers from various government initiatives discussed as follows.

To promote green development all over India, Central and Local Governments has taken initiatives by providing incentives in different forms for energy efficient and sustainable development. Thus, the building under current project is able to be benefited by the following grants:

The developers can avail 10% additional Floor Area Ratio (F.A.R.) for a gold certified 'Green Building' as per provision under rule 69A of the said rules, notified by Kolkata Municipal Corporation affairs department vide notification no. 54/MA/O/C-4/3R-3/2014 dated 05.02.2015. [7]

The authorities recently gave green signal to the decision of 2% reduction in the building plan sanction fee for developers who would be able to present a provision where recycling of grey water can be done using the dual-pipe system so that the water could be used for gardening or washing cars. A further 2% incentive would also be given if the solid waste generated for the building is recycled through composting. [7-8]

Officials mentioned that the current rules will be amended by the state government once the recommendations are passed. According to NKDA rules, a 2% incentive is already provided for having provisions of rainwater harvesting and solar energy. [7-8]

Taking all of the above mentioned benefits into account, the total incentive benefit of the green building for a developer is computed to be nearly 6500000.00.

6. **DISCUSSION**

As both of the buildings are considered to be built at the present time, no differentiation is considered in the costs of the materials. If the rates at the time of conventional building's true construction are bought to the present date, it will be observed that the material cost for the present construction would be less than that of the conventional building, owing to a number of recycled materials used in construction nowadays. However, there are a number of extra costs incurred in this project as detailed in Table-2; the main cost coming due to CFC free equipment, which is mandatory for a Green Building.

In course of studying the stipulations of the IGBC Green Homes rating System, it was found that the existing building is not even satisfying some of the mandatory requirements of green building. Thus, extra costs were also incurred in this way.

Seri al	Choices	s Conventiona l			reen ilding	Differen ce in	Remarks
No.		Poin	Cost	Poin	Cost	Cost	
		ts	()	ts	()		
1	Basic	2		2			No
	House-						Change
	hold						
	Ameniti						
	es						
2	Natural	0		2	25260	25260	Drought
	Topogra						Tolerant
	phy or						Vegetatio
	Vegetati						n
	on						
3	Heat	0	270335	1	667380	397045	Grass
	Island						Pavers
	Effect,						Installed
	Non-						
	roof						
4	Heat	0	137928	4	196268	58340	High
	Island						Reflective
	Effect,						Tiles
	Roof						

Table 2: Sustainability Performance and Cost Comparison between the Conventional Building and the Sustainable Alternative.

			· · · · ·		r										
5	Parking Facilities	1	—	1			No Change	19	Solar Water	0		4	40600	40600	SWH Installed
	for						0		Heating						
	Visitors	0		1	1000	1000	No ali aible		System:						
6	Electric Vehicle	0		1	1000	1000	Negligible	20	50% Energy	0	20000	2	50000	30000	BEE 4
	Chargin							20	Saving	0	20000	2	50000	50000	Star Rated
	g								Measure						Pump &
	Facility				•				s in						Motor
7	Construc tion	0		2	20000	20000			Other Applianc						
	Workfor								es &						
	ce								Equipme						
	Facilities								nt						
8	Design	2	140000	2	140000		No	21	Distribut ed	0		0			No
	for Different		0		0		Change		Power						Change
	ly Abled								Generati						
9	Green	0		1					on						
	Home							22	Energy	0		1	4000	4000	3 Meters
	Guidelin es							23	Metering CFC	NS*	111000	S*	161484	504840	Installed
10	Soil	NS*		S*	20000	20000		23	Free	IND .	0	3	0	304840	
10	Erosion	110		5	20000	20000			Equipme		-		Ĩ		
	Control								nt						
11	Landsca	0		4	Alread			24	Organic Waste	2		4	200	200	Pit for Vermi-
	pe Design				y covere				Manage						compostin
	Design				d				ment						g
12	Manage	0		0			No Turf	25	Handlin	1		1			No
	ment of						and		g of						change
	Irrigatio n						Drought Tolerant		Construc tion						
	Systems						Species		Waste						
13	Rainwat	0		4	15000	15000	Water		Material						
	er						Tank	26	s	0		0			
	Harvesti ng						Required	26	Reuse of Salvaged	0		0			Nil
14	Water	0	750600	4	825000	74400	New		Material						
	Efficient	Ű	100000		020000	/ 1100	Plumbing		S						
	Plumbin						Fixtures	27	Material	2	See	2	See		No
	g Fixtures								s with Recycle		Table- 1		Table- 1		Change
15	Waste	0		0					d		1		1		
10	Water	Ŭ		0					Content						
	Treatme							28	Local	2	See	2	See		No
	nt &								materials		Table-		Table-		Change
16	Reuse Water	0		1	6000	6000	3 Meters	29	Rapidly	0	1	0	1		No
10	Metering	0		1	0000	0000	Provided		Renewa			0			Change
17	Enhance	7		10	27500	27500	Motion		ble						
	d Energy						Sensor,		Building						
	Perform ance						Reduced LPD		Material s &						
18	On-site	0		6	100000	100000	Solar		Certified						
10	Renewa	5		5	100000	100000	Panels		Wood						
	ble						Installed	30	Separati	NS*]	S*	8400	8400	Separate
	Energy								on of House-						Bins provided
									hold						provided
									Waste						

21	T 1	4		4			NT		
31	Enhance	4		4			No		
	d Day-						Change		
	lighting								
32	Enhance	2		2			No		
	d Fresh						Change		
	Air						_		
	Ventilati								
	on								
33	Exhaust	2	21600	2	21600		No		
55	Systems	2	21000	2	21000		Change		
34	Low	0	276985	0	276985		No		
54	VOC	0		0					
			1		1		Change		
	Material								
	s, Paints								
	&								
	Adhesiv								
	es								
35	Building	1		1			No		
	Flush-						Change		
	out								
36	Cross	4		4			No		
	Ventilati						Change		
	on						Ũ		
37	Tobacco	NS*		S*	500	500	10		
	Smoke			~			Signboard		
	Control						s		
	Control						Provided		
38	Innovati	2		4			Previous		
50	on &	2		4			Innovativ		
	Design						e Credit		
	Process						Points		
							Already		
							Accredite		
	10						d		
39	IGBC	0		1	500000	500000	IGBC		
	Accredit						Accredite		
	ed						d		
	Professi						Profession		
	onal as						al		
	Green						consulted		
	Building								
	Consulta								
	nt								
r	Total	34	648031	79	781339	1833085			
			4	. ,	9				
*Note: NS (Not Satisfied): S (Satisfied)									

*Note: NS (Not Satisfied); S (Satisfied)

7. CONCLUSION

It can be seen that in order to construct a Green Building in the place of the conventional one, an extra amount equivalent to `1833085.00 (about `92.00 per square feet i.e. 7.82% extra) has been incurred. On the other hand, the probable monetary benefits earned by the developer, as per the various Government Initiatives already discussed, amount to

`6500000.00 (about `329.18 per square feet i.e. 28.00%). Hence for the present case, the net benefit earned is `4666915.00 (about `236.42 per square feet i.e. 20.10%). Hence, this proposition seems to be quite attractive from a developer's point of view.

From a user's point of view, one reaps both tangible and intangible benefits. Tangible benefits are in the form of reduction of electricity and water usage costs. Intangible benefits are in the form of better environment and facilities. Hence, Green Buildings will always attract the interest of the user.

With rapidly changing and growing economy due to urbanization and globalization we must emphasize and analyze properly the advantages of energy efficiency, conservation, and smart construction techniques. Vividly, this concept is true for issues related to the environment; but it is equally valid for reasons related to the competitive sphere of the business world. Apart from acting as a safeguard to the environment and health, overall implementation of green building criteria in construction sector will also help improvising the economy of developing countries like India.

REFERENCES

- [1] Pe'rez-Lombard, L., Ortiz, J. and Pout, C., "A review on buildings energy consumption information", *Energy and Buildings*, 40, 2008, pp. 394-398.
- [2] Indian Building Congress; 2008; Practical Handbook on Energy Conservation in Buildings; [N.K.Bansal, Jotirmay Mathur (eds)]; Nabhi Publication, New Dehi, India.
- [3] India; 2007; High Performance Buildings and Development (HPBAD) Project Team Meeting; Beijing, China; Retrieved from: http://www.asiapacificpartnership.org/BATF/India.pdf on 29th May, 2008.
- [4] Pawar, A. S., "Green Buildings", *Journal of Engineering Research and Studies*, III, I, January-March 2012, pp. 87-90.
- [5] Sentman, S. D. "Healthy Buildings: Green Building Standards, Benefits, and IncentivesV", *The Journal of Biolaw & Business*, 12, 1, 2009, pp. 1-4.
- [6] IGBC Green Homes Rating System, version 2.0; Abridged Reference, Introduction
- [7] Green Rating for Integrated Habitat Assessment (GRIHA);
 Government of West Bengal, Department of Municipal Affairs:
 GRIHA Incentives; Retrieved from: http://www.grihaindia.org/index.php?option=com_content&
 view=article&id=109 on 2nd April, 2016.
- [8] Suman Chakraborti2% incentive for New Town green buildings; TNN; Dec 6, 2015, 05.56 AM IST; Times of India, City, Kolkata